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for Multiconductor Transmission Lines
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Abstract—In the application of the modal decoupling method,
questions arise as to why the nonnormal matrices LC and
CL are diagonalizable. Is the definition of the characteristic
impedance matrix Z. unique? Is it possible to normalize cur-
rent and voltage eigenvectors simultaneously, yet assure the
correct construction of the Z. matrix? Under what conditions
do MM, = I and Z, = M,M,'? In this paper, these
questions are thoroughly addressed. We will prove the diago-
nalizability of matrices LC and CL for lossless transmission
lines (though the diagonalizability of their complex analogues,
ZY and YZ matrices, is not guaranteed for lossy lines), and
will demonstrate the properties of their eigenvalues. We have
developed an algorithm to decouple one type of matrix differential
equation, and to construct the characteristic impedance matrix
Z. explicitly and efficiently. Based on this work, the congruence
and similarity transformations, which have caused considerable
confusion and not a few errors in the decoupling and solution
of the matrix telegrapher’s equations, will be analyzed and
summarized. In addition, we will also demonstrate that under
certain conditions, the diagonalization of two or more matrices
by means of the congruence or similarity transformations may
lead to coordinate system “mismatch” and introduce erroneous
results.

I. INTRODUCTION

HE even- and odd-mode decomposition method and the

¢~ and w-mode decomposition method, can correctly solve
electromagnetic coupling problems involving two symmetrical
and two asymmetrical lines, but not more complex structures.
The modal decoupling technique is a powerful extension of
these two methods, in that it handles an arbitrary number of
coupled lines at arbitrary locations. This technique has been
applied to the analysis of multiconductor transmission line
(MTL) problems for more than two decades [1]-[10]. In 1973,
Marx [2] applied modal analysis to second order matrix differ-
ential equations and computed the characteristic impedance of
the MTL’s using voltage and current eigenvectors of the LC
and CL matrices, where L is the inductance matrix and C
is the capacitance matrix of the interconnect structure. In his
work, Marx proved the bi-orthogonality between the voltage
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and current eigenvectors. Djordjevic et al. [4]-[10] have
employed this method to solve various problems involving
MTL’s and networks in both the time and frequency domains.

With the increasing complexity of digital electronic systems
and decreasing rise/fall times of the data pulses propagating
through these systems, the behavior of MTL networks has
become a new design topic for digital design engineers.
As a result, the modal decoupling method has become one
of the most popular approaches in the analysis of signal
integrity, including waveform distortion, multiple reflections,
and crosstalk. The advantages of the modal decoupling method
include its simplicity of implementation and its ability to han-
dle the complex geometries of real-world physical problems.
Nonetheless, rigorous evaluations of the mathematical support
of this technique have not been reported in the literature. The
characteristic impedance matrix of a transmission line system
is constituted from the voltage and current eigenvectors.
However, the norms of these eigenvectors are not umnique.
Without other constraints, this type of construction will lead
to nonunique definitions of the M,, M;, and Z. matrices.
Kajfez [11] first showed that the characteristic impedance
matrix of an MTL system can be constructed from the voltage
eigenvectors with prespecified norms (canonical norms). In
Kajfez’s approach, the telegrapher’s equations are converted,
in terms of the parameter matrices C and L, into one-sided
(both matrices I and C are on one side of the equation) and
two-sided (one matrix is on one side of the equation and the
other matrix is on the opposite side of the equation) matrix
differential equations, as will be presented in the next section.
The modal decomposition technique was applied by Kajfez
to solve the two-sided form of matrix equation (others have
used the modal decomposition technique to solve the one-sided
form of matrix equation, whether or not it was actually correct
to do so). Kajfez cleverly borrowed techniques from quantum
mechanics and linear algebra and applied them to electrical
engineering applications.

However, the approach Kajfez used in [11] to decouple
the matrix differential equations and to find the canonical
norms is lengthy. In this article, we shall describe an algorithm
for decoupling this type of equation which generates correct
results directly and provides physical insight into the modal de-
coupling technique. As a starting point, here we only consider
lossless transmission lines with real impedance and admittance
matrices in the frequency domain. More general cases of lossy
transmission lines with complex parameter matrices employing
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the generalized modal decoupling technique will be presented
at a later time.

The remainder of this paper is organized as follows: In
Section II, we shall derive the simplified method for decou-
pling the two-sided matrix differential equations and show
how the algorithm can be used to compute the canonical
norms of the M, matrix. Section Il investigates various
conventional approaches for the solution of one-sided matrix
differential equations, and illustrates potential problems with
improperly specified norms. In Section IV, examples are
provided which demonstrate the cases where erroneous results
may occur, when incorrect diagonalization procedures are
applied to matrices.

II. A NEW ALGORITHM FOR DECOUPLING
TwoO-SIDED MATRIX DIFFERENTIAL EQUATIONS

In this section, a simultaneous diagonalization of two sym-
metric matrices based on two successive transformations will
be developed and then applied to decouple the two-sided
matrix second-order differential equations.

The matrix telegrapher’s equations, which govern the volt-
age and current distributions along the lossless MTL’s, are

d .
2|V} = —juLi) )

d .
T|1) = —juK|V) @

where z is a spatial coordinate, L is the inductance matrix
and K (or C in some references) is the capacitance (or
more precisely, the static induction) matrix representing the
stored magnetic and electric energy in a passive network,
respectively. The n x n L and K matrices are real, symmetric,
and positive definite [11], where n represents the number of
transmission lines. The unknowns, |V} and |I), are respec-
tively the voltage and current vectors in the corresponding
n-dimensional inner product space.' Taking the derivative with
respective to z in (1), and eliminating %|I ) by means of (2),
we obtain

d2
-1 2
Similarly, (2) can be written as
d2
-1 2
K E‘D = —w"L|I). 4)
premultiplying (3) and (4) by L and K, respectively, we arrive
at
d? 3
and

d? 9

Since the matrices L1 and K~ are also real symmetric
and positive definite, matrices L~ and K in (3), as well as
K~! and L in (4), may be converted into diagonal forms

'In classical notation [12], a ket vector |} represents a column vector in
the n-dimensional vector space X, while a bra vector {| represents a row
vector in the corresponding dual space X *. The 1nner product 1s defined as the
canonical product of vectors in the spaces X and X*. 1.e.. (|y). |7)) = {(ylz).
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simultaneously by congruence transformations [13], [14]. Let
A = L' and B = K. To diagonalize the matrices A
and B simultaneously, consider the generalized eigen-equation
corresponding to (3)

(B - )\1A)|ll> =0 Q)
where |z,) is the i-th generalized eigenvector of (7) and X, is
the ¢-th root of the equation

det(B - /\1A) = 0.

We will construct linearly independent eigenvectors {|e])}
which satisfy the generalized eigen-equation (7). Since A is
Hermitian and positive definite, we may solve

Alpj) = ajle,)
for a complete orthonormal set of eigenvectors {|¢,)} with
real and positive eigenvalues {«, }. First, we construct a matrix

S with a;% l¢,) as its columns, namely
_L
S =la, *les)]
so that
S'S = [ 6]
and

det S'S = |det 8> = [] o, #0.

J=1

Therefore, S is nonsingular, so that S—1 exists. Furthermore,
it may be observed that

-1 —1
S'AS = [0 *(@ullAle, ®

@J)]
= [o5 (o, 0] T o lpy)]
= [{pe)] = 1 ®

where I is the identity matrix.
We now define

M = S'BS = M*. )]
Since M is Hermitian, we may solve
M|¢.) = Auf¢h) (10)

for a complete orthonormal set of eigenvectors {{1,)} with
real eigenvalues {\,}. Then we construct

le) = Sly) (11)
or
i) = S e). (12)
Using (8). (9), and (12), we can rewrite (10) as
(S'BS — A\, S'AS)S™Hel) =0 (13)
which, premultiplying by (S*)~1, yields
(B — X\A)le}) =0. (14)

Thus, we have proven that {|e;)} are the eigenvectors of the
generalized eigen-equation (7). Because S is nonsingular, {12)
indicates that |e;) for i = 1,2,...,n, in (14) are linearly
independent and form a basis. If they were not, there would
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exist a set of constants {«,} not all zero such that

Zaﬂe;) =0
i=1

which by (12) would imply

Z a,l¢;) =0
=1

for {a,} not all zero, a contradiction to the independency of
(). | |

Since M is Hermitian. there exists a unitary matrix U such
that

U'MU =Dy

where D,; is a diagonal matrix with the eigenvalues of M
as its diagonal elements. Note that matrix U is orthonormal,
while matrix S is orthogonal, but not normalized. Here and
throughout the paper, an orthogonal matrix is different from
the conventional definition by which its column vectors are
normalized, and a normalized vector means a vector with
magnitude of unity.

We now construct a matrix Q = SU. For simplicity, these
two successive changes of the bases are merged into one,
providing the following relations

Q'AQ =U'S'ASU=UU'=1 (15)

and

Q'BQ = U'S'BSU = U'MU = Dy,. (16)

From (15) and (16), it may be observed that the first
congruence transformation, S*AS, has transformed A into an
identity matrix, while the consecutive transformation, U*IU,
keeps the identity matrix unchanged. On the other hand, the
first transformation, S*BS, preserves the symmetric properties
of B, while the consecutive unitary transformation converts B
into a diagonal form. Note that when A and B are transformed
into the basis {|¢/)} by Q, in general, the diagonal elements of
matrices I and D, are not the eigenvalues of the matrices A
and B, and the column vectors of Q are neither eigenvectors
of A nor B, but are eigenvectors of matrix A~1B or LK.
This transformation that diagonalizes the matrix A~!'B is not
a unitary one. Furthermore, the 7j-th elements of A in the |e])
basis is

(el Ale)) = (S AS ;) = 6.
The above equation is the component form of (15). Note that
lef) and |e;) are not orthonormal with respect to the identity
matrix. but are orthonormal with respect to the kernel A for
¢ =1,2,...,n, and the inner product of [e}) and |e]) is not
equal to é,,, unless A becomes an identity matrix. Using (14),
we have

€ Ble)) = X eilAle)) = A,

This equation is the component form of (16).

The matrices A and B are not simultaneously similar to
two diagonal matrices, but are simultaneously congruent to
two diagonal matrices. Notice that the diagonalization of A
and B by congruence transformations is independent of the
degeneracy of the eigenvalues {\,}.
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The aforementioned features, which are associated with the
linear transformations in the Euclidean space, will be used
in Section IV. We will now demonstrate explicitly how to
construct matrix Q directly from A and B without passing
through the two consecutive steps. We first search for {\,} as
the roots of the equation

det(B — M\, A) = 0.

We then solve (14) for eigenvectors {|e!)} corresponding to
A.. and scale these eigenvectors such that
il Ale) = bs;.

The vectors {|e/}} are simply the columns of matrix Q. Under
the conditions that A and B are real and symmetric for lossless
lines, matrix Q may be chosen to be real. If a degeneracy
occurs, the eigenvectors {|e])} may be chosen such that Q~*
exists.

Now we are ready to apply the aforementioned transfor-
mations to matrix differential equations. To bring (3) into a

proper basis system, we represent voltage vector |V) in the
{le})} basis by
V) =Q7HV).

This coordinate transformation of |V} is applicable due to the
existence of Q1. As a matter of fact, the columns of Q
are {|e})}, which are linearly independent. Expressing |V) in
terms of |V'), and premultiplying (3) by Q?f, we have

d2

—IV) = —w?D V')

where the diagonal matrix D, consists of eigenvalues A, =

v? as its elements. We now define the modal propagation

(2

constants G, as

(7)

2

g =

vV,

0

where ¢ = 1,2,...,n and v, is the i-th modal velocity. Hence.
each decoupled differential equation in (3) has the general
solution

VL/ - al;I'e'_JBzL + al—eJ/iz

(13)

where the amplitudes of the modal voltages o and a; of
the forward and reflected waves at two given locations are
determined by two-point boundary conditions [15].

Since (17) is represented in the modal coordinate system,
the boundary conditions cannot be directly applied. After
transforming |V’) back to the original basis by performing
the inverse transformation shown in [11], we obtain

V)= Z(aje*j/?zz + a7 el
=1
where |e;) is the i-th column of Q. Similarly, the general
solution of (6), |I) and its basis {[i’)}, can be obtained
by decoupling (6) using the aforementioned procedures. We
substitute (19) into (1), and obtain

1) =3 (e e = areihoi)

=1

(19)

(20)
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where

€3y

e)} and {|5)}, are

uniquely determined and exhibit the bi-orthogonal property

, 1._
1) = L el

. _ 1
(enldy) = (€L ]ef) =
J
1
= b —.
JAJ

Now we are in a position to define two bi-orthonormal
vectors

ey = AZle])

and

1

i) = A1)

where the norms of |ef) and |i¢) are defined as their canonical
norms. The current |I) given by (20) is different from the
|7} solved directly from (6). In fact, solving the two coupled
telegrapher’s (1) and (2) is different from solving the two de-
coupled Helmholtz (5) and (6). Even though the two Helmholtz
equations are derived from the telegrapher’s equations. the
Helmbholtz equations have an enlarged solution domain in
comparison to the solution domain of the telegrapher’s (1) and
(2) or (1) and (5). This difference appears as a result of the
elimination of the constraint between the dependent variables
|[V) and |I). The use of (1) provides the necessary constraint
between |V} and |I) and ensures the correct construction and
the unique determination of the Z. matrix.

Thus far, we have proven that {|e)} and {}i¢)} as well as
{le:)} and {{i,|} form a complete set of nonorthogonal bases
in the n-dimensional inner product space and its dual space,
where {|e,)} and {(¢,|} are the arbitrarily-normed voltage and
current eigenvector sets, respectively. Every vector {(i;]} is
orthonormal to every vector {|e;)}, for ¢ # j. This result is
supported by a theorem that states that if {(,|} is a basis in an
n-dimensional vector space, then there is a unique basis {|e,)}
in its dual space with the property that {(,|e,) = 6;; [16].

Recall that the characteristic impedance matrix, Z., is
defined as |V;) = Z|I;), and V) and |I;) can be expressed
as
Vi) =D (ATe™P5)lef) and |If) =

D (Afe?82)i)
i=1
(22)

m+

where Af = %
)\7

Due to the bi-orthonormality of {[¢)} and {|i¢)}. and the

constraint between | V') and |I). the “projection” of the forward

voltage wave |V) onto |i,) is the same as the “projection” of

the forward current wave |I;) onto |e), namely
(eclls) = (i5Vy) = Afe 772
Substituting (23) into (22) respectively, we obtain

Vi) Zle ells) =

(23)

n

=D (e

=1

cHled) Z|Iy)
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and

n

-

=1

) P ) is)

le

Thus, the two important equations can be readily established
as [11]

sy

Zo =) led)(es] and Y lif)(e;] =
=1 =1

where Z. and the identity matrix, I, are expressed as the finite
sums of the outer products of the bases {|e¢)} and the {[i{)}.
Constructing M, using |e¢?) as its 4-th column and M, using
|#¢) as its ¢-th column, then

Z.=MM! =M,M " (24)

and

M, M’ =1. (25)

Equation (24) indicates that the characteristic impedance, Z,,
is uniquely defined, and (25) exhibits the bi-orthonormality
between M, and M;.

So far, we have completed detailed derivations that support
the simultaneous diagonalization of matrices L™ and K, and
the decoupling of the matrix differential equations in the n-
dimensional inner product space. The detailed algorithm for
solving the two-sided matrix equations has been outlined, and
the useful components of this result have been described in this
section. We would like to underscore the following points:

+ To diagonalize matrices L~! and K simultaneously, the
relationship (e]|L~'|e’) = &,; is enforced first.

« To assure that both |V) and |I) are the general solutions
to (1) and (2) and that the bi-orthonormality between the
{le£)} and the {]5)} is satisfied, the component form of
(15) needs to be modified as (ef|L™"|e7) = 6,,),, where
A; are the roots of

det(B — MA) = 0.

Only in this way can the bi-orthonormality of the voltage and
the current eigenvectors, and the constraint between |V') and
[T, be satisfied.

III. ANALYSIS OF TECHNIQUES FOR THE DECOUPLING OF
ONE-SIDED MATRIX DIFFERENTIAL EQUATIONS

As we mentioned in the Introduction, Marx applied the
modal decoupling method to the one-sided matrix differential
equation and proved the bi-orthogonality between the voltage
and current eigenvectors [2]. Following his ideas as well
as his notation, many authors have employed the modal
decoupling method, of which some implementations have been
correct, while some have not. Because errors have arisen, the
underpinning theory is worth clarifying rigorously.

In Marx’s approach, (5) was intended to be decoupled
by applying a similarity transformation to matrix LK. In
the Euclidean space, due to the symmetry and the positive
definiteness of matrices L and K, the matrix LK is similar
to a diagonal matrix. However, in the unitary space, ZY . the
complex analogue of LK in the presence of losses, is similar,
in general, to a Jordan canonical matrix {3], [17].
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In this section we shall demonstrate the diagonalizability of
the asymmetric matrix LK. thereby confirming the correctness
of Marx’s approach. premultiplying (14) by A1, we obtain

(A7IB — A\ T)le!) = 0. (26)

This is the standard eigen-equation of A~'B, with |e]) being
the i-th eigenvector of matrix A~'B or LK. Moreover, it
was proven in (14) of the previous section that eigenvectors
{le})} form a basis, namely, that all eigenvectors in the
set {|e/)} are linearly independent. Since (14) and (26) are
equivalent, we have thus proven that matrices A™'B or LK
are diagonalizable. We may obtain the eigenvalues and the
corresponding eigenvectors of matrix LK in (26) by solving
equations

det(LK — A1) =0
and
(LK — A\J)]e,) =0

where |e,) is an arbitrarily-normed i-th voltage eigenvector.
Let = LK and ¥ = KL; then }* = ¥, due to the
symmetry of K and L. Since the determinant of a matrix is
equal to the determinant of its transpose, we have
det(KL — AI)" = det(LK — AI)
ie.,

det(KL — AI) = det(LK — I,

As a consequence, matrix LK and its transpose, KL, share
the same eigenvalues of A, = V%,L =1,2,...,n.

The transformation matrix between modal and circuit volt-
ages, My (or Sy in [6]), consists of the voltage eigenvectors
{le.}} as its i-th columns. Thus, the unknown vector |V') and
matrix LK can be represented in the {|e;)} basis by

M V) = V)
and
My 'LKMy = A = diag{)\,..., A\ }- (27)

Applying these transformations to (5), the decoupled modal
vector equation of (5) is obtained as

d?

’{7—2|‘7/> = _ng“/7/>. (28)
Similarly. from (6), we have
d? .
—-5|I’) = —w?A|I") 29

dz

where |V') and |1} are the representations of [V) and |7) in
the modal bases, and A is the diagonal matrix with the eigen-
values of LK as its diagonal elements. Transforming these two
equations into the original basis, the unknown vectors |V') and
|7} will be expressed by (19) and (20). respectively. except that
|e!) should be replaced by an arbitrarily-normed ¢-th voltage
eigenvector |e,) of matrix LK, and |#}) should be replaced by
an arbitrarily-normed ¢-th current eigenvector |4,) of matrix
KL. In this case. the bi-orthogonality between the voltage and
the current eigenvectors is automatically guaranteed, because
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LK and KL are adjoint matrices. Nevertheless, attention must
be paid to assigning to each voltage eigenvector an individual
scalar and to each current eigenvector an individual scalar as
its canonical norm. This is because an eigenvector multiplied
by an arbitrary nonzero scalar is also an eigenvector corre-
sponding to the same eigenvalue. In other words, assuming
that IN is a nonsingular n x n diagonal matrix, then

(MyN)T'LK(MyN) = A. (30)

From (27) and (30), however, it is observed that (My-N)~! =
M;l or MyyN = My, if and only if N is an identity matrix.
Similar to (27), we may obtain

M;'KLM; = A.
Transposition of the above equation leads to
MSLK(M}) ! = A.

This equation shows that matrix LK is diagonalized by matrix
(M%)™1 and its inverse, ie., (M%)™! = MyN or My =
(M%)"!N~!. Thus, in general

MiMy # I

unless N is an identity matrix. The arbitrariness of My  and
M; is also discussed in [18].

In Section II, we illustrated that the canonical norms of
the eigenvectors {le5)} of matrix LK assure the correct
construction of Z. In addition to our method, there are at least
three other schemes to set the norms of these eigenvectors:

1) Find and normalize the eigenvectors {|e,)} and {|é,)}
of matrices LK and KL,

2) Find and normalize the eigenvectors {|e,)}, then com-
pute eigenvectors {|i,)} by the bi-orthonormal relation
(25).

3) Find and normalize the eigenvectors, {|e,)}, or leave
the norms of {|e,)} arbitrary, then determine the cur-
rent eigenvectors by means of (1), and compute the
characteristic impedance by

Z.=MyA~'M;'L

where M;l in (24) has been replaced by A_lM",-lL,
which is obtained from (1).

In Scheme 1, the bi-orthonormality requirement cannot be
satisfied unless the {|e,)} themselves form an orthonormal
basis, and so do the {|¢;)} for ¢ = 1,2,...,n. Furthermore,
the canonical norms of {|e;)} or {]i;)} are rarely equal to one.
Thus, the constraint between the voltage and current vectors
|V} and |I) is rarely satisfied. Therefore, this scheme is rarely
valid. It may be observed that (19) and (20) are the general
solutions to (5) and (1), respectively. After multiplying V;, the
i-th component of |V}, by a nonzero scalar for each i, |V) will
still be the general solution to the same equation. However,
thereafter. |I) will not remain the solution to (1). because |V')
and |I) are constrained through (1) or (2). If either |V') or |) is
fixed, the other must be computed through the corresponding
coupling equation.

Scheme 2 guarantees the bi-orthonormality between the
basis vectors {|e,)} and {|i,)}, but violates the constraint of
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the general solution to the telegrapher’s equations, in general.
Examples of erroneous results from improper usage of these
two approaches will be provided in the next section.

It may be observed from the impedance expression in
Scheme 3 that the arbitrary factors in the norms of the basis
vectors {|e;)} have been canceled due to the involvement
of both My and My' in the expression of Z. while the
orthogonality between {le;)} and {|i;)} is still preserved.
With this approach, (15) becomes Q*AQ = D where D is
a diagonal matrix, rather than an identity matrix I. Unlike
Schemes 1 and 2, this method does provide correct answers.
The only drawback of this method is the deteriorating accuracy
of Z. due to the computation of the inverse of My and the
cancelation of the arbitrary constants involved in the norms
when matrix My is nearly ill-conditioned. With this scheme,
(24) and (25) are not valid.

1V. EXAMPLES, REMARKS, AND CAUTIONS

In the preceding sections we have discussed the properties
of the dual bases in an n-dimensional Euclidean space, and
have emphasized the nonorthogonal property of the {|e;)} or
{l4;)} and the bi-orthonormal property between the {|e;)} and
{]#:)}. To provide physical and geometric insight into these
properties and to illustrate the features and limitations of linear
transformations, we present here a number of examples.

Example 1: Recently, Amari [19] demonstrated an inter-
nally inconsistent result where any two symmetric coupled
transmission lines could have a diagonal characteristic
impedance matrix, and, regardless of their physical and
geometric properties, could have the same characteristic
impedance matrix, when both {|e;)} and {|¢;)} are normalized
(Scheme 1). A similar question was posed by Sun [20] and
replied to by Marx [21].

In Amari’s article, the normalized My and M matrices
were as follows

1 1
w-(§ %)

V2 V2
and

V2 V2
The characteristic impedance matrix, Z., is obtained as

1 0
2.~ (5 ).

We see that Z. is an identity matrix because both My and
M are unitary, i.e., M{, = M;,! and M4 = Mj". Using
(24), we always obtain Z, = L

Taking the symmetric two conductor case as illustrated in
[19], and computing M, with our new algorithm, we obtain
the following results

~6.32 7.01
M”‘( 6.32 7.01)

7z (8399 947
=\ 917 88.99 )

1 L
My= (4 ).

and, using (24)
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Fig. 1. Two line composite microstrip structures from which the correspond-
ing I and K matrices are generated. -

It is clear in this example that the two column vectors of M,
are perpendicular to each other; that is, M, is an orthogonal
matrix. However, each column vector of M, is scaled by
{e;|L71e;) = A, rather than by {(e;le;) = 1 for i = 1,2,
where J; is the i-th eigenvalue of matrix LK. This example
resolves the heretofore unresolved question raised in Amari’s
paper.

Example 2: To provide insight into the eigenvector scaling
and matrix simultaneous diagonalization, we shall extract
the mathematical features of the LK and KL matrices of
the composite microstrip structures from their corresponding
vector-space structures. Fig. 1(a)-1(d) depict a variety of
transmission line cross sectional structures of differing phys-
ical configurations, and with different material properties. To
simplify the problem, the X axis is chosen to be positioned
along the juncture between the ground plane and the first
dielectric layer. We then see that in the Case 1 structure, the
two conductors are symmetric about the Y axis and have
the same spacing above the ground plane. In Case 2, the
substructures (i.e., the elements of the dielectric sandwich) are
identical, but a location for the Y axis cannot be found which
makes the structure Y axis symmetric, and the conductors
have different spacings above the X axis. Case 3 has the same
geometric configuration as that of Case 2, but there is now a
lack of homogeneity in the dielectrics as well. Case 4 exhibits
Y axis symmetry again, but the two conductors have different
heights above the ground plane.

The geometry and dielectric properties of a symmetric
embedded microstrip transmission line structure of Fig. 4
in [7], and three asymmetric transmission line structures are
depicted in Fig. 1(a)-(d), respectively. Their corresponding
inductance and capacitance matrices, L and K, are for case 1

63.3

194.6 :
L= ( 63.3 494.6) nt/m Gb
_ (628 —49 (
K= (_ o 62.8) pF/m. (32)
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Fig. 2. Geometric representation of the eigen-bases of LK and KL matrices generated from two-line composite microstrip structures.
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Fig. 3. Composite microstrip structure employed in a numerical demonstration that the eigenvalues of the corresponding L and K matrices are different
from the diagonal elements of the product of the diagonalized L matrix and the diagonalized K matrix.
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The column vectors of My or My, {|e;)} or {|i;)}, which
~are the eigenvectors of the LK or KL matrices, span a two-
dimensional Euclidean space. The geometric structures of the
{le:)} and {}i;)} bases in the Euclidean spaces for the four
cases are plotted in Fig. 2(a)-(d), respectively, where the
spatial angles between every two vectors of the two sets of
basis components are computed by the standard directional
cosine formula.

In Fig. 2(a), due to the symmetry of the transmission lines,
{les)} itself forms an orthogonal set, as does {|i;}}, i.e., all
angles between every pair of these basis vectors equal 90°.

This result verifies the bi-orthonormality between the bases
{les)} and {]¢;)} in the original Euclidean space and its dual
space, and demonstrates that these two orthogonal coordinate
systems are equivalent. In Fig. 2(b), LK and KL are not
symmetric, and the angle between the basis components |iy)
and |3} is 83°, while the angle between |e;) and |es) is 97°.
Note that the vector |e;} is no longer parallel to the vector
li;) for ¢ = 1,2 (the angle between them is not 0°, but 7°).
This nonzero angle induces the source of the errors in the
conventional normalization schemes, as will be discussed in
detail in the final example.

Fig. 2(c) depicts the angle between |i1) and |iz) to be 79°,
and the angle between |e;) and |ep) to be 101°. The angle
between the basis components [i;) and |e;) for 2 = 1,2 is 11°.
In Fig. 2(d), we see a remarkable increase of the off-orthogonal
angles between the “self” bases. The angle between [41) and
|i2) is 62°, and the angle between |e;) and |es) is 118°. The
angle between the “mutual” bases [¢;) and |e;) fori = 1,2 is
28°. Nevertheless, the angles between the basis vectors {|e;)}
and {[|¢;)}, for ¢ # j, are always equal to 90°.

For the Case 1 structure, the eigenvectors of the LK
matrix will not only be linearly independent, but will also
be orthogonal to each other. In the asymmetric cases, where
the heights above the ground plane for the two conductors
are different, decreasing the horizontal separation of the two
conductors results in an increasing departure from orthogo-
nality of the spanning set of eigenvectors, even though the
basis vectors generated from these matrices will continue to be
linearly independent. This situation may be understood fairly
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straightforwardly for the case of a two conductor transmission
line. When structares containing three or more conductors
are examined, it is virtually impossible that the resulting KL
or LK matrices can generate a spanning set of eigenvectors
which are orthogonal, though, as before, they continue to
be linearly independent. Thus, in general, the concept of
orthogonal basis sets does not apply, and none can be found
for those complex structures.

Example 3: Here we shall show a case in which the simul-
taneous diagonalization scheme of the matrices L. K, LK,
and KL works for a two symmetric line configuration, but
does not work in general.

In Case 1, the diagonal elements of matrix K are identical,
as are those of matrix L. With this property, the 2 X 2 matrices
L and K as well as the matrices L~! and K commute, which
guarantees also that the product of either LK or KL is a
real symmetric matrix. As a result, the eigenvectors of L are
also eigenvectors of K. The necessary and sufficient condition
that two real symmetric matrices commute is that they have
a common complete set of orthonormal eigenvectors [14, 22].
For this special case, the eigenbasis of K~ coincides with that
of L, as well as with that of LK, and the transformation matrix
M,, becomes an orthogonal matrix. Furthermore, the matrices
L and L ! or K and K—! have a common complete set of
orthonormal eigenvectors, because a matrix and its inverse
always commute with each other. Thus, the two bases, {le,)}
and {]¢;}}, become equivalent, i.c., the orthogonal bases are
self dual. Now it is readily apparent that the six matrices L,
L', K, K-!, LK, and KL can be diagonalized in their
common eigenbasis, {]e,)} or {|¢,)}. Applying the congruence
transformation to the I. and K matrices, we obtain

o (43130 0.00
Lq = M;LM; = ( 0.00 557.90 ) "V/m
67.70  0.00
_ 1 _
Kq=MyKMy = ( 0.00 57.90) pF/m

where M = M;l, and the diagonal elements of Ly and K
are the eigenvalues of L and K, respectively.

This validates (7a) and (7b) in [8] which describe the
simultaneous diagonalization of the matrices L and K by the
matrix My, namely

L = My'L(M}) 7' = K
k
K, = M, KMy

where M; = (M%,)~1. However, if the 2 x 2 matrices L and
K do not have identical diagonal elements, and thus do not
commute, then ihe bases {|e;)} and {|7,}}, or equivalently M,
and M,, are different from each other. If matrices L and K do
pot commute, the diagonalization of L and K by (7a) and (7b)
in [8] may lead to erronecous results, as will be demonstrated
in the following section.

Applying the congruence transformation to the L and K
matrices, for the first asymmetric case, we obtain

380.71 0.17

—_ t —_
Lq=M;LM; = ( 0.18 224.47

) nH/m
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2331.90 2.19) pF/m.

— t —
Ka=MyKMy = ( 177 4730.60

The eigenvalues of L and K are calculated as 395.599 and
219.624 (nH/m) for L and 2296.60 and 4881.87 (pF/m) for K,
respectively. It may be observed that the diagonal elements of
L, and Ky are different from the eigenvalues of L and K,
and the L and K matrices are not truly diagonalized by the
congruence transformation.

For the second asymmetric case, we obtain

360.19 0.02
0.02 232.30

143.07 024
0.01 4077.80 ) P

Ld = gLMI = < ) nH/m

K, = M,KM;y = (

The eigenvalues of L and K are calculated as 395.60 and
219.62 (nH/m) for L, and 142.88 and 4239.82 (pF/m) for K,
respectively. It may be observed that the difference between
the diagonal elements of the matrices Ly and K, and the
eigenvalues of the matrices L and K becomes slightly larger
than that in the first asymmetric case.

For the third or last asymmetric case, we obtain

Cagtrag _ (23596 0.03
La =M LM; = ( 0.01 228.32) nH/m
ot _ (14504 0.5
Kq=My-KM; _< 0.02 3315.70 ) PF/™

The eigenvalues of L and K are calculated as 440.42 and
157.55 (nH/m) for L and 143.58 and 4313.91 (pF/m) for
K, respectively. From this case, a large difference between
the diagonal elements of the matrices Ly and K4 and the
eigenvalues of the matrices L and K is observed. Clearly, all
the above Ly and K; matrices are not truly diagonal, though
the off-diagonal elements are much smaller than the diagonal
elements. This situation occurs because the normalized con-
gruence transformation matrix M; (My) is not designed to
diagonalize L (K), unless L and K commute.

The discrepancy between the diagonal elements of L4 and
the eigenvalues of L, and between the diagonal elements of Ky
and the eigenvalues of K, increases with the off-orthogonal
angles between the eigenbases {le,)} or {|7,)}. From the
geometric structure of the bases, it may be observed that for
asymmetric lines, the simultaneous diagonalization of matrices
L and K fails. Note that through the use of the new algorithm
introduced in Section II, the matrices L' and K as well as
LK, and the matrices K~! and L as well as KL, can be
simultaneously diagonalized by the M, and M, transforma-
tions, respectively, with the corresponding canonical norms.
However, the diagonal elements of Ly and K, are not the
eigenvalues of L and K (though the diagonal elements of
K, are the eigenvalues of LK). It is clear that the diagonal
elements of L ;K will not be the eigenvalues of LK, and thus
cannot provide the correct values of the modal velocities. If
L is diagonalized by means of the congruence transformation
M, and K is diagonalized with the congruence transformation
of My, these two matrices L and K are transformed into two
different coordinate systems. The simultaneous diagonalization
scheme is valid only when My  and M; are orthogonal.
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Example 4: To emphasize the conclusion discussed in Ex-
ample 3, we introduce yet another example for the asymmetric
three-line in a multilayer media, as depicted in Fig. 3. The
capacitance and the inductance matrices of the composite
microstrip structure of Fig. 3 are computed as

0.6266 —0.2295 -0.0130
K= 1{-0229 0.4380 —0.0068 | pF/cm
—0.0130 —-0.0068 2.1480
and
14.4600  8.0360 0.1307
L= 80360 144700 0.1302 | nH/cm.
0.1307 0.1302 6.1020

The eigenvalues of LK are computed as 7.3356e-17. 4.3721e-
17, and 1.3104e-16 (sec/m)?. After performing the similarity
transformations on L and K, the diagonalized matrices L and
K, namely. L; and K turn out to be

L
2.2503e + 01 0.0000e + 00 0.0000e + 00
= | 0.0000e + 00 6.4289¢ + 00 0.0000e + 00 }nH/cm
0.0000e + 00 0.0000e + 00 6.0999¢ + 00
and
K4

2.8409¢ — 01 0.0000¢ + 00 0.0000e + 00

= | 0.0000e +- 00 7.8038e — 01 0.0000e 4 00 | pF/cm.

0.0000e + 00 0.0000e +- 00 2.1481e + 00

The diagonal matrix of the matrix product LK, is the
following

LKy
6.3929¢ — 17 0.0000¢ + 00 0.0000e + 00
= 1 0.6000e + 00 5.0171e — 17 0.0000¢e + 00
0.0000e + 00 0.0000e + 00 1.3103¢ — 16

It is clear that the three diagonal elements are not the same as
the eigenvalues of LK. These differences occur because the L
and K matrices were diagonalized in two different coordinate
systems. Even though L and K are truly diagonalized. the
product of the corresponding eigenvalues cannot lead to the
correct eigenmode velocities.

Example 5: Numerical results showing the characteristic
impedance matrix, Z., constructed by the improperly normal-
ized {|e,)} and {|¢;)} discussed in Section III, are presented
as the final example. As stated earlier, at least three schemes
have been used to specify the norms of {|e;)} and {[i;)}.
However, two of the three yield incorrect results, as will be
demonstrated in the following examples:

1) In Section III, we described the normalization for both
{le;)} and {|¢,)} as Scheme 1 and discussed a two
line symmetric case in Example 2. We shall analyze
the third asymmetric line case in Example 2 using this
scheme. With the matrices L and K given by (37) and
(38), the corresponding normalized voltage and current
eigenvector matrices are

~1.000 0.467
My = (—0.006 0.884)

(sec/m?).

2)

and
—0.884 —0.006
Mf_( 0.467 1.000)‘
Thus,
¢+ _ (0.881 —0.001
MfM"(o.ooo 0.881

the bi-orthonormal relationship is not satisfied, i.e.,
M;M;, # I, because the angles between the basis
components |4;) and |e;) for ¢ = 1,2 are not equal to
0°. An inspection of the above matrices reveals that
(eil#;) < 1 in the nonorthogonal MY, and M; cases,
and the offset between M, M; and I would become
larger when the nonorthogonality of the bases {je,)}
and {|i,)} increases.

The characteristic impedance matrix, Z., constructed by
(24) turns out to be

7 _ (1:383 0476
c=\0476 0.887 )

The characteristic impedance matrix obtained using our
scheme to construct M, is

7 47829 4.178
€T\ 4178 7.362 )°

Comparing these two representations of Z., the signifi-
cant discrepancy between them is apparent.

In the second scheme of setting the norms of {|e;)}
and {|¢,)} described in Section III, (5) was solved
and the {|e,)} were normalized, and then the {|;)}
were computed by means of the bi-orthonormal relation
(25). The My matrix is the same as that in 1). The
corresponding M matrix for the third asymmetric case
is

0.531

~1.003  —0.008
My = ( 1.135)'

It may be observed that to satisfy the bi-orthonormality
between M!, and M;, the norms of each current
eigenvector must be greater than unity. and the norms
must become even greater with further increases in the
nonorthogonality of the {|e;)} and {|¢;)} bases.

The characteristic impedance matrix constructed by

(24) is

7. — 1.218 0.419
°7\0419 0.782 )"

Similarly, the difference in the Z generated by this ap-
proach and by our approach is large. Note that using this
approach, the relationship between MY, and My is fixed
by (25). However, the necessary constraint established
by (1), or equivalently, by M;l = A‘lM;lL, cannot
be satisfied in the general case. Thus, the characteristic
impedance matrix constructed by (24) is still incorrect.
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V. CONCLUSION

In this paper, we have developed a novel method to decouple
the two-sided matrix differential equations and to specify
the canonical norms of the voltage and current eigenvectors
for the construction of the characteristic impedance matrix.
The core technique of this method was then used to prove
the diagonalizability of the nonnormal matrix LK (or KL);
thus, the conventional approach which decouples the one-sided
matrix differential equations has now been justified. We also
revealed the feature of the nonHermitian matrices LK and
KL that their eigenbases are nonorthogonal. Therefore, the
projection theorem and other related frame work developed
in the orthonormal basis cannot be directly applied. Based
on this work, we have rigorously analyzed the modal de-
coupling method and have illustrated the limitations in the
application of the diagonalization of two or more matrices.
A historical problem involved in the normalization of the
voltage and current eigenvectors of matrices LK and KL
has been resolved. In addition, we clarified the theory of
partial differential equations and provided a procedure of
obtaining solutions to the coupled multi-variable differential
equations. Finally, we wish to emphasize that under accidental-
degeneracy conditions, a complex nonnormal matrix ZY,
whose counter pair is LK, is nondiagonalizable. The solution
of this latter problem will be the subject of a future submission.

ACKNOWLEDGMENT

The authors would like to thank J. Murphy, ARPA/ESTO,
L. Micheel, WL/ELET, and N. Ortwein, NRaD/Code 80, for
program suppott; P. Hayes, B. Techentin, and A. Staniszewski,
Mayo Foundation, for helpful suggestions and for assistance
in the preparation of text; S. Richardson, E. Doherty, and
D. Jensen, Mayo Foundation, for manuscript and artwork
preparation; and Prof. R. Voelker, Department of Electrical
Engineering, University of Nebraska and Dr. Z. Bajzer, Mayo
Foundation, for helpful discussions and manuscript review.

REFERENCES

[1]1 F. Y. Chang, “Transient analysis of lossless coupled transmission lines in
a nonhomogeneous dielectric medium,” IEEE Trans. Microwave Theory
Tech., vol. MTT-18, pp. 616-626, Sept. 1970.

[2] K. D. Marx, “Propagation modes, equivalent circuits, and characteristic
terminations for multiconductor transmission lines with inhomogeneous
dielectrics,” IEEE Trans. Microwave Theory Tech., vol. MTT-21, pp.
450-457, July 1973.

[3]1 C. R. Paul, “On uniform multimode transmission lines,” IEEE Trans.
Microwave Theory Tech., vol. MTT-21, pp. 556-558, Aug. 1973.

[4] M. Mehalic and R. Mittra, “Investigation of tapered multiple microstrip
lines for VLSI circuits,” IEEE Trans. Microwave Theory Tech., vol. 38,
no. 11, pp. 1559-1568, Nov. 1990. )

[51 V. K. Trpathi and J. B. Rettig, “A SPICE model for multiple coupled
microstrip and other transmission lines,” IEEE Trans. Microwave Theory
Tech., vol. MTT-33, pp. 1513-1518, Dec. 1985.

[6] A. R. Djordjevic, T. K. Sarkar and R. F. Harrington, “Time domain
response of multiconductor transmission lines,” Proc. IEEE, vol. 75,
pp. 743~764, Junc 1987.

{71 A.R. Djordjevic and T. K. Sarkar, “Analysis of time response of lossy

multiconductor transmission line networks,” IEEE Trans. Microwave

Theory Tech., vol. MTT-35, pp. §98-907, Oct. 1987.

V. K. Tripathi and H. Lee, “Spectral-domain computation of characteris-

tic impedances and multiport parameters of multiple coupled microstrip

lines,” IEEE Trans. Microwave Theory Tech., vol. 37, no. 1, pp. 215-221,

Jan. 1989.

[8

Pt

2099

[9] G. W. Pan, K. S. Olson, and B. K. Gilbert, “Improved algorith-
mic methods for the prediction of wavefront propagation behavior
in multiconductor transmission lines for high frequency digital signal
processors,” IEEE Trans. Computer-Aided Design, vol. 8, pp. 608-621,
June 1989.

G. W. Pan, J. A Prentice, S. K. Zahn, A. J. Staniszewski, and
B. K. Gilbert, “The simulation of high-speed, high-density digital
interconnects in single chip packages and multichip modules,” IEEE
Trans. Components, Hybrids, and Manufacturing Technol., vol. 15, pp.
465-477, Aug. 1992.

D. Kajfez, “Multiconductor transmission lines,” in Notes on Microwave
Circuits, vol. 2, ch. 7. Oxford, MS: Vector Fields, 1986.

C. Cohen-Tannoudji et al., Quantum Mechanics. New York: Wiley,
1977.

K. Fukunaga, Statistical Pattern Recognition.
1972, pp. 106-111.

B. Friedman, Principles and Techniques of Applied Mathematics, Ch. 2.
New York: Wiley, 1960.

M. W, Hirsch and S. Smal, Differential Equations, Dynamic Systems,
and Linear Algebra, Ch. 3. New York: Academic, 1974.

P. R. Halmos, Finite-Dimensional Vector Spaces. New York: Springer-
Verlag, 1987.

N. Jacobson, Basic Algebra, vol. I.  New York: Freeman, 1985.

N. Fache, F. Olyslager, and D. D. Zutter, Electromagnetic and Cir-
cuit Modelling of Multiconductor Transmission Lines, ch. 4. Oxford:
Clarendon Press, 1993.

S. Amari, “Comments on spectral-domain computation of characteristic
impedances and multiport parameters of multiple coupled microstrip
lines,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 1733-1734,
Aug. 1992,

Y. Y. Sun, “Comments on propagation modes, equivalent circuits, and
characteristic terminations for multiconductor transmition lines with
inhomogeneous dielectrics,” IEEE Trans. Microwave Theory Tech., vol.
MTT-26, pp. 915-916, Nov. 1978.

K. D. Marx, “Reply to comments on propagation modes, equivalent
circuits, and characteristic terminations for multiconductor transmission
lines with inhomogeneous dielectrics,” IEEE Trans. Microwave Theory
Tech., vol. MTT-26, pp. 916~918, Nov. 1978.
L. E. Ballentine, Quantum Mechanics, ch. 1.
Prentice-Hall, 1990.

{10]

[11]
(12]
[13] New York: Academic,
[14]
[15]
(6]
[17]
(18]

[19]

[20]

[21]

[22]

Englewood Cliffs, NJ:

Guang-Tsai Lei received the M.S. degree in physics
in 1984 from the University of Notre Dame, IN, the
M.E. and Ph.D. degrees in electrical engineering in
1987 from the University of Kansas, Lawrence.

Among her research projects at Notre Dame,
after finishing the Ph.D. course of work, were the
modeling of energy distribution of p-particle de-
cay and the development of computer programs
in support of a high energy physics experiment
in Fermi National Laboratory. While in the Ph.D.
program at University of Kansas, she was engaged
in research on digital signal processing and electromagnetic modeling of
radar backscattering from sea ice. She also worked on the design and
calibration of FM-CW radar systems at the Radar Systems and Remote
Sensing Laboratory at Kansas University. In 1987, she worked in a full time
Research Position at the Mayo Clinic in Rochester, MN. While a Member
of Mayo’s research team, she developed and enhanced application software
which was. capable of analyzing and modeling the respiratory system. She
also modified a finite-element formulation and solved the stress-distribution
in the canine diaphragm; she developed various electro-mechanical models for
the respiratory system under normal/abnormal conditions for the study of lung
mechanics. She also improved the input impedance estimate for the respiratory
system by means of digital spectrum analysis and modified .the impedance
measurement device, which demonstrated that the engineering models and
the measurements from live dogs were in -agreement. In 1990, she joined
the Special Purpose Processor Development Group at the Mayo Foundation
as an Engineer/Mathematician. Her first assignment in this group was the
development of the thermomechanical modeling techniques for integrated
circuits and multichip modules. Subsequently, she was assigned to exploit
new approaches for the modeling of the electromagnetic environment of GaAs
integrated circuits, printed circuit boards and MCM’s operating at high system
clock rates and wide signal bandwidths.

Dr. Lei is a member of Tau Beta Pi.



2100

Guang-Wen (George) Pan (S°81-83-M’84-SM’94)
received the B.E. degree in mechanical engineering
from Peking Institute of Petroleum Technology in
1967. He attended the Graduate School, University
of Science and Technology of China from 1978
to 1980, majoring in electrical engineering. He
received the M.S. degree in 1982, and the Ph.D.
degree in 1984 both in electrical engineering from
the University of Kansas, Lawrence, KS.

He worked at the Institute of Development and
Research in Northwest of China in machine design
as an Associate Engineer, and then as an Electrical Engineer responsible for
design of pulse-width modulation electronics and digital remote fire control
systems used in petroleum seismic exploration. He came to the United States
in August 1980 as a Research Assistant in the Remote Sensing Laboratory,
University of Kansas. From 1984 to 1985, he was a Post Doctoral Fellow at
the University of Texas, engaged in a project on computer aided design of
airborne antenna/radome systems. He joined the Mayo Foundation in 1985,
engaged in the theoretical modeling of the electromagnetic behavior of high-
speed integrated circuits, electronic circuit boards, and high density substrates,
placement and routing. From 1986 to 1988 he was an Associate Professor
in the Department of Electrical Engineering, South Dakota State University.
In 1988 he joined the Department of Electrical Engineering and Computer
Science at the University of Wisconsin-Milwaukee as an Associate Professor.
He has been the Director of the Signal Propagation Research Laboratory since
1990 and became a Professor in 1993. His research interests continue to be in
the mathematical modeling of the electromagnetic environment of high clock
rate signal processors.

Dr. Pan is cited in Who’s Who in the Midwest, a member of Eta Kappa
Nu, and is on the Editorial Board of the IEEE/MTT.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 9, SEPTEMBER 1995

Barry K. Gilbert (5’62-M’70-SM’87) received the
B.S. degree in electrical engineering from Purdue
University, Lafayette, IN, in 1965, and the Ph.D.
degree in physiology and biophysics with minors
in applied mathematics and electrical engineering,
from the University of Minnesota, MN, in 1972.

He is presently a Staff Scientist and Professor
in the Department of Physiology and Biophysics,
Mayo Foundation, Rochester, MN. His research in-
terests include the design of special-purpose digital
processors for high-speed signal processing, and
the development of advanced integrated circuit and electronic packaging
technologies to support real-time signal processing of extremely wideband
data. He has worked on a variety of projects, including the development in the
mid-1970’s of a very wideband special-purpose digital data handling and array
processing computer fabricated entirely with sub-nanosecond emitter coupled
logic, and a special-purpose multiple instruction, multiple data (MIMD)
processor capable of operating with up to 30 coprocessors under parallel
microcode control in the late 1970’s. More than 25 digital Gallium Arsenide
(GaAs) chips have been designed in his laboratory during the past decade,
most recently a GaAs heterojunction bipolar transistor (HBT) chip capable of
operating at 6 GHz clock rates. A half dozen industrial collaborations have
been conducted to insert GaAs chips into existing signal processors. Recently,
his group has designed a family of multichip modules (MCM’s) which have
demonstrated their ability to support the operation of multiple interconnected
GaAs chips at system clock rates of up to 2.5 GHz. His group has been
developing electromagnetic modeling tools for printed circuit boards, MCM’s,
and integrated circuits since 1980; these tools are presently being distributed
to both universities and large corporations. He is currently responsible for the
development of CAD tools at the system and GaAs integrated circuit levels,
as well as high density electronic packaging technologies based on deposited
and laminated metal-organic MCMs, which will allow the fabrication of signal
processing modules operating at multi-GHz clock rates.

Dr. Gilbert’s research group received the 1994 “ARPA” Director’s Award
for sustained excellence.

x



