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Examination, Clarification, and
Simplification of Modal Decoupling Method

for Multiconductor Transmission Lines
Guang-Tsai Lei, Guang-Wen (George) Pan, Senior Member, IEEE, and Barry K. Gilbert, Senior Member, IEEE

Abstract—In the application of the modal decoupling method,
questions arise as to why the nonnormal matrices LC and
CL are diagonalizable. Is the definition of the characteristic
impedance matrix Z. unique? Is it possible to normalize cur-
rent and voltage eigenvectors simultaneously, yet assure the
correct construction of the Z, matrix? Under what conditions
do MfM. = I and Z. = M.M;l? In this paper, these
questions are thoroughly addressed. We will prove the diago-
nalizability of matrices LC and CL for lossless transmission
lines (though the diagonalizability of their complex analogues,
ZY and YZ matrices, is not guaranteed for lossy lines), and
will demonstrate the properties of their eigenvalues. We have
developed an algorithm to deconple one type of matrix differential
equation, and to construct the characteristic impedance matrix
Z. explicitly and efficiently. Based on this work, the congruence
and similarity transformations, which have caused considerable
confusion and not a few errors in the decoupling and solution
of the matrix telegrapher’s equations, will be analyzed and
summarized. In addition, we will also demonstrate that under
certain conditions, the diagonalization of two or more matrices
by means of the congruence or similarity transformations may
lead to coordinate system “mismatch” and introduce erroneous
results.

I. lNTRODUCTION

T HE even- and odd-mode decomposition method and the
c- and ~-mode decomposition method, can correctly solve

electromagnetic coupling problems involving two symmetrical
and two asymmetrical lines, but not more complex structures.
The modal decoupling technique is a powerful extension of
these two methods, in that it handles an arbitrary number of
coupled lines at arbitrary locations. This technique has been
applied to the analysis of multiconductor transmission line

(MTL) problems for more than two decades [1]-[10]. In 1973,
Marx [2] applied modal analysis to second order matrix differ-
ential equations and computed the characteristic impedance of
the MTL’s using voltage and current eigenvectors of the LC
and CL matrices, where L is the inductance matrix and C
is the capacitance matrix of the interconnect structure. In his
work, Marx proved the bi-orthogonality between the voltage
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and current eigenvectors. Djordjevic et al. [4]–[ 10] have
employed this method to solve various problems involving
MTL’s and networks in both the time and frequency domains.

With the increasing complexity of digital electronic systems
and decreasing rise/fall times of the data pulses propagating
through these systems, the behavior of MTL networks has
become a new design topic for digital design engineers.
As a result, the modal decoupling method has become one

of the most popular approaches in the analysis of signal

integrity, including waveform distortion, multiple reflections,

and crosstalk. The advantages of the modal decoupling method
include its simplicity of implementation and its ability to han-
dle the complex geometries of real-world physical problems.
Nonetheless, rigorous evaluations of the mathematical support
of this technique have not been reported in the literature. The
characteristic impedance matrix of a transmission line system
is constituted from the voltage and current eigenvectors.
However, the norms of these eigenvectors are not unique.

Without other constraints, this type of construction will lead

to nonunique definitions of the M ij, Mi, and Zc matrices.

Kajfez [11] first showed that the characteristic impedance
matrix of an MTL system can be constructed from the voltage
eigenvectors with prespecified norms (canonical norms). In
Kajfez’s approach, the telegrapher’s equations are converted,
in terms of the parameter matrices C and L, into one-sided
(both matrices L and C are on one side of the equation) and

two-sided (one matrix is on one side of the equation and the
other matrix is on the opposite side of the equation) matrix

differential equations, as will be presented in the next section.
The modal decomposition technique was applied by Kajfez

to solve the two-sided form of matrix equation (others have
used the modal decomposition technique to solve the one-sided
form of matrix equation, whether or not it was actually correct
to do so). Kajfez cleverly borrowed techniques from quantum
mechanics and linear algebra and applied them to electrical
engineering applications.

However, the approach Kajfez used in [11] to decouple
the matrix differential equations and to find the canonical
norms is lengthy. In this article, we shall describe an algorithm
for decoupling this type of equation which generates correct
results directly and provides physical insight into the modal de-
coupling technique. As a starting point, here we only consider
lossless transmission lines with real impedance and admittance
matrices in the frequency domain. More general cases of lossy
transmission lines with complex parameter matrices employing
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the generalized modal decoupling technique will be presented

at a later time.
The remainder of this paper is organized as follows: In

Section II, we shall derive the simplified method for decou-
pling the two-sided matrix differential equations and show
how the algorithm can be used to compute the canonical
norms of the MV matrix. Section III investigates various
conventional approaches for the solution of one-sided matrix
differential equations, and illustrates potential problems with
improperly specified norms. In Section IV, examples are
provided which demonstrate the cases where erroneous results
may occur, when incorrect diagonalization procedures are
applied to matrices.

II. A NEW ALGORITHM FOR DECOUPLING

TWO-SIDED MATRIX DIFFERENTIAL EQUATIONS

simultaneously by congruence transformations [13], [14]. Let

A = L-l and B = K. To diagonalize the matrices A

and B simultaneously, consider the generalized eigen-equation

corresponding to (3)

(B - A,A)Iz,) = O (7)

where I.E,) is the i-th generalized eigenvector of (7) and ~, is

the i-th root of the equation

det(B – }iA) = O.

We will construct linearly independent eigenvectors { Ie{)}
which satisfy the generalized eigen-equation (7). Since A. is
Hermitian and positive definite, we may solve

Al~j) c ~jl~~)

for a complete orthonormal set of eigenvectors {IP3 ) } with

real and positive eigenvalues {aj }. First, we constructa matrix

In this section, a simultaneous diagonalization of two sym- s ‘ith aj

metric matrices based on two successive transformations will
be developed and then applied to decouple the two-sided
matrix second-order differential equations. so that

The matrix telegrapher’s equations, which govern the volt-
age and current distributions along the lossless MTL’s, are

and

(1)

(2)

where z is a spatial coordinate, L is the inductance matrix
and K (or C in some references) is the capacitance (or Therefore,
more precisely, the static induction) matrix representing the it may be
stored magnetic and electric energy in a passive network,
respectively. The n x n L and K matrices are real, symmetric,
and positive definite [11 ], where n represents the number of
transmission lines. The unknowns, IV) and 11), are respec-

$ Iqj ) as itscolumns, namely

s = [a;*lpj)]

Sts= [C+5,j]

det S’S ~ ldet S12 = fia;l #O.
]=1

S is nonsingular, so that S–l exists. Furthermore,
observed that

StAS = [a;+ (P,l]A[a~* IPJ)]

= [CY;+(P,IC+Z,IV2)I

= [(%kf~)l= I (8)
tively the voltage and current vectors in the corresponding

n-dimensional inner product space. 1Taking the derivative with where I is the identity matrix.

by’ means of (2), We now definerespective to z in (1), and eliminating ~ 11)

we obtain

~z,l ) = -U2KIV).L-l< V

Similarly, (2) can be written as

K-l~\l) = –W2LII).

M ~ S*BS = Mt. (9)

(3) Since M is Hermitian, we may solve

Ml@,) = A,I@,) (lo)

for a complete orthonormal set of eigenvectors {l+,)} with
(4) real eigenvalues {&}. Then we construct

premultiplying (3) and (4) by L and K, respectively, we arrive Ie:) = Sl?fb,) (11)

at or

(5)
l+,) = S-’leo. (12)

and

Using (8), (9), and (12), we can rewrite (10) as
~11) = -UJ2KL11). (6)

(StBS - A,S’AS)S-’le~) = O (13)

Since the matrices L – 1 and K– 1 are also real symmetric which, premultiplying by (St) – 1, yields

and positive definite, matrices L – 1 and K in (3), as well as (B - A,A)le~) = O. (14)
K–l and L in (4), may be converted into diagonal forms

Thus, we have proven that {leg)} are the eigenvectors of the
1In classical notation [12], a ket vector I ) represents a column vector in

the n-dimensional vector space .Y, while a bra vector ( I represents a row
generalized eigen-equation (7). Because S is nonsingular, (12)

vector in the corresponding dual space X-”. The inner product M defined as the
indicates that Iej ) for i = 1,2,. ... n, in (14) are linearly

canonical product of vectors in the spaces X and .1-”, I.e.. ( IV), Ir ) ) = (YII). independent and form a basis. If they were not, there would
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exist a set of constants {a,} not all zero such that The aforementioned features, which are associated with the
linear transformations in the Euclidean space, will be used

i+)=o in Section IV, We will now demonstrate explicitly how to
j=l construct matrix Q directly from A and B without passing

which by (12) would imply through the two consecutive steps. We first search for {A, } as
the roots of the equation

im=o det(B – A,A) = O.
J=l

for {oJ } not all zero, a contradiction to the independency of

{Iv,)}
Since M is Hermitian. there exists a unitary matrix U such

that

where D~f is a diagonal matrix with the eigenvalues of M
as its diagonal elements. Note that matrix U is orthonormal,
while matrix S is orthogonal, but not normalized. Here and
throughout the paper, an orthogonal matrix is different from

the conventional definition by which its column vectors are
normalized, and a normalized vector means a vector with

magnitude of unity.
We now construct a matrix Q E SU. For simplicity, these

two successive changes of the bases are merged into one,
providing the following relations

Q’AQ = U’S’ASU = UU’ = I (15)

and

QtBQ = UtStBSU = UtMU = DL1. (16)

From (15) and (16), it may be observed that the first

congruence transformation, St AS, has transformed A into an

identity matrix, while the consecutive transformation, U~IU,
keeps the identity matrix unchanged. On the other hand, the
first transformation, S*BS, preserves the symmetric properties
of B, while the consecutive unitary transformation converts B
into a diagonal form. Note that when A and B are transformed
into the basis { Ie; ) } by Q, in general, the diagonal elements of
matrices I and DfiI are not the eigenvalues of the matrices A
and B, and the column vectors of Q are neither eigenvectors

of A nor B, but are eigenvectors of matrix A– lB or LK.
This transformation that diagonalizes the matrix A– I B is not
a unitary one. Furthermore, the ij-th elements of A in the Ie; )
basis is

The above equation is the component form of (15), Note that

le~) and Ie$) are not orthonormal with respect to the identity
matrix. but are orthonormal with respect to the kernel A for
i = 1,2, ,n, and the inner product of le~) and le~) is not

equal to 6,J, unless A becomes an identity matrix. Using (14),
we have

We then solve (14) for eigenvectors { le~) } corresponding to
Al, and scale these eigenvectors such that

(e~lAle~) = tii,.

The vectors {Ie;)} are simply the columns of matrix Q. Under
the conditions that A and B are real and symmetric for lossless
lines, matrix Q may be chosen to be real. If a degeneracy
occurs, the eigenvectors {Ie; ) } may be chosen such that Q – 1
exists.

Now we are ready to apply the aforementioned transfor-
mations to matrix differential equations. To bring (3) into a

proper basis system, we represent voltage vector IV) in the
{Ie{)} basis by

IV’) = Q-’/V).

This coordinate transformation of IV) is applicable due to the
existence of Q – 1. As a matter of fact, the columns of Q
are {Ie: ) }, which are linearly independent. Expressing IV) in
terms of IV’), and premultiplying (3) by Qt, we have

~lV’) = -LJ2D1,1V’) (17)

where the diagonal matrix DLI consists of eigenvalues & =

‘2 as its elements. We now define the modal propagationv,
constants /3, as

w’

where i=l,2, ..., n and v, is the i-th modal velocity. Hence.
each decoupled differential equation in (3) has the general
solution

where the amplitudes of the modal voltages a: and a,– of
the forward and reflected waves at two given locations are
determined by two-point boundary conditions [15],

Since ( 17) is represented in the modal coordinate system,

the boundary conditions cannot be directly applied. After
transforming IV’) back to the original basis by performing
the inverse transformation shown in [11], we obtain

IV) = jju~e-j’” + a~eJ6zz)le{) (19)
7,=1

(e~lBle) = A(ejlA/ej) = ~id~j. where Ie; ) is the i-th column of Q. Similarly, the general
This equation is the component form of (16). solution of (6), II) and its basis {Ii:)}, can be obtained

The matrices A and B are not simultaneously similar to by decoupling (6) using the aforementioned procedures. We
two diagonal matrices, but are simultaneously congruent to substitute (19) into ( 1), and obtain
two diagonal matrices. Notice that the diagonalization of A

and B by congruence transformations is independent of the II) = fi(u~e-~~’ - a:e~fi’)l~~) (20)
degeneracy of the eigenvalues {A,}. L=l
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where

Ii:) = ~L-’le). (21)

Thus, the two sets of eigenvectors, { le~)} and { li~)}, are

uniquely determined and exhibit the hi-orthogonal property

(e(lij) = (ejlL-’lej)~
.7

Now we are in a position to define two bi-orthonormal
vectors

and

where the norms of Ie~) and Ii~) are defined as their canonical
norms. The current II) given by (20) is different from the
II) solved directly from (6). In fact, solving the two coupled
telegrapher’s (1) and (2) is different from solving the two de-
coupled Helmholtz (5) and (6). Even though the two Helmholtz
equations are derived from the telegrapher’s equations, the

Helmholtz equations have an enlarged solution domain in
comparison to the solution domain of the telegrapher’s (1) and
(2) or (1) and (5). This difference appears as a result of the
elimination of the constraint between the dependent variables

IV) and 11). The use of (1) provides the necessary constraint
between IV) and II) and ensures the correct construction and
the unique determination of the Zc matrix.

Thus far, we have proven that {Ie;)} and {ii:)} as well as
{ Iei) } and {(i, I} forma complete set of nonorthogonal bases
in the n-dimensional inner product space and its dual space,

where {Ie, )} and {(i, I} are the arbitrarily -normed voltage and

current eigenvector sets, respectively, Every vector {(i ~I} is
orthonormal to every vector { Iej ) }, for i # .~. This result is
supported by a theorem that states that if {(i, I} is a basis in an
n-dimensional vector space, then there is a unique basis {Ie] ) }
in its dual space with the property that (i, Iey) = b~j [16].

Recall that the characteristic impedance matrix, Z., is
defined as lV~) = ZCllf), and lV~) and llf) can be expressed
as

‘i=l inl

(22)
~+

where A: = ~.
~,’

Due to the bl-orthonormality of { le~) } and {li~) }, and the
constraint between IV) and II). the “projection” of the forward
voltage wave IV~ ) onto Ii,) is the same as the “projection” of
the forward current wave \It ) onto Ies ), namely

(e~llf) = (Z~lV~) = A~e-JpzZ. (’?3)

Substituting (23) into (22) respectively, we obtain

and

If).

Thus, the two important equations can be readily established

as [11]
n n

%=1 Z=l

where Z, and the identity matrix, I, are expressed as the finite
sums of the outer products of the bases { Ie:) } and the { Ii;)}.
Constructing M,, using Ie;) as its i-th column and M, using
lit) as its i-th column, then

ZC = MC,M~, = MVM; l (24)

and

M,M~ = I. (25)

Equation (24) indicates that the characteristic impedance, Zc,
is uniquely defined, and (25) exhibits the bi-orthonormality
between M. and Mi.

So far, we have completed detailed derivations that support
the simultaneous diagonalization of matrices L–’ and K, iand
the decoupling of the matrix differential equations in the n-

dimensional inner product space. The detailed algorithm for
solving the two-sided matrix equations has been outlined, and
the useful components of this result have been described in (this
section. We would like to underscore the following points:

● To diagonalize matrices L-1 and K simultaneously, the
relationship (e( IL– 1le~) = 4,3 is enforced first.

● To assure that both IV) and 11) are the general solutions
to (1) and (2) and that the bi-orthonorrnality between the

{Ie$)} and the { li~) } is satisfied, the component form of
(15) needs to be modified as (e~lL-lle~) = 6,j~,, whlere

Ai are the roots of

det(B - AA) = O.

Only in this way can the bi-orthonormality of the voltage and
the current eigenvectors, and the constraint between IV) and
11), be satisfied.

111. ANALYSIS OF TECHNIQUES FOR THE DECOUPLING OF

ONE-SIDED MATRIX DIFFERENTIAL EQUATIONS

As we mentioned in the Introduction, Marx applied the
modal decoupling method to the one-sided matrix differential

equation and proved the bi-orthogonality between the voltage
and current eigenvectors [2]. Following his ideas as well
as his notation, many authors have employed the modal
decoupling method, of which some implementations have been
correct, while some have not. Because errors have arisen, the
underpinning theory is worth clarifying rigorously.

In Marx’s approach, (5) was intended to be decoupled
by applying a similarity transformation to matrix LK. In
the Euclidean space, due to the symmetry and the positive
definiteness of matrices L and K, the matrix LK is similar
to a diagonal matrix. However, in the unitary space, ZY, the
complex analogue of LK in the presence of losses, is similar,

in general, to a Jordan canonical matrix [3], [17].
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In this section we shall demonstrate the dia,gonalizability of

the asymmetric matrix LK. thereby confirming the correctness
of Marx’s approach. premultiplying (14) by A– 1, we obtain

(A-lB – A,I)le;) = O. (26)

This is the standard eigen-equation of A- 1B, with Ie; ) being
the i-th eigenvector of matrix A– 1B or LK. Moreover, it
was proven in (14) of the previous section that eigenvectors
{le~)} form a basis, namely, that all eigenvectors in the

set { Ie: ) } are linearly independent. Since (14) and (261 are

equivalent, we have thus proven that matrices A – 1B or LK
are diagonalizable. We may obtain the eigenvalues and the
corresponding eigenvectors of matrix LK in (26) by solving
equations

det(LK – AZI) = O

and

(LK - ~zI)leZ) = O

where I~, ) is an arbitrarily-normed i-th voltage eigenvector.

Let Q = LK and @ = KL: then flt = -, due to the

symmetry of K and L. Since the determinant of a matrix is
equal to the determinant of its transpose, we have

det(KL – M)’ = det(LK – M)

i.e.,

det(KL – X) = det(LK – M).

As a consequence, matrix LK and its transpose, KL, share
the same eigenvalues of ~, = ~, i = 1,2, . . . ..n.

The transformation matrix be~ween modal and circuit volt-

ages, MY (orSt in [6]), consistsof thevoltageeigenvectors

{Ie,)} as its i-th columns, Thus, the unknown vector ITT)and
matrix LK can be represented in the { Iei ) } basis by

M;’lw = Iv’)

and

M~lLKMV = A = cliag{~l, . . ,An}. (27)

Applying these transformations to (5), the decoupled modal
vector equation of (5) is obtained as

$#) =-ti2AlV’).
,4

Similarly, from (6), we have

(29)

where IV’) and 11’) are the representations of IV) and 11) in
the modal bases, and A is the diagonal matrix with the eigen-
values of LK as its diagonal elements. Transforming these two
equations into the original basis, the unknown vectors IV) and
11) will be expressed by ( 19) and (20). respectively, except that
le~) should be replaced by an arbitrarily-normed i-th voltage
ei,genvector Ie, ) of matrix LK, and Ii{) should be replaced by
an arbitrarily -normed i-th current eigenvector Ii, ) of matrix
KL. In this case. the bi-orthogonalit y between the voltage and
the current eigenvectors is automatically guaranteed, because

LK and KL are adjoint matrices. Nevertheless, attention must

be paid to assigning to each voltage eigenvector an individual
scalar and to each current eigenvector an individual scalar as
its canonical norm. This is because an eigenvector multiplied
by an arbitrary nonzero scalar is also an eigenvector corre-
sponding to the same eigenvalue. In other words, assuming
that N is a nonsingular n x n diagonal matrix, then

(MtN)-lLK(MVN) = A. (30)

From (27) and (30), however, it is observed that (M1-N)-l =
M~l or MI.N = MT-, if and only if N is an identity matrix.

Similar to (27), we may obtain

M:lKLMI = A.

Transposition of the above equation leads to

M~LK(Mj)-l = A.

This equation shows that matrix LK is diagonalized by matrix
(M~)-l and its inverse, i.e., (M~)–l = MI-N or MI- =
(M~)-lN-’. Thus, in general

MjMv- # I

unless N is an identity matrix. The arbitrariness of Ml, and
MI is also discussed in [18].

In Section II, we illustrated that the canonical norms of
the eigenvectors {Iej ) } of matrix LK assure the correct

construction of Z.. In addition to our method, there are at least
three

1)

2)

3)

In

other schemes to set the norms of these eigenvectors:

Find and normalize the eigenvectors{let)}and {Ii,)}

of matricesLK and KL,
Find and normalize the eigenvectors {Ie, ) }, then com-
pute eigenvectors {Ii,)} by the bi-orthonormal relation
(25).
Find and normalize the eigenvectors, { Ie, ) }, or leave
the norms of { Ie, ) } arbitrary, then determine the cur-
rent eigenvectors by means of (1), and compute the
characteristic impedance by

Zc = MvA-lM~lL

where M; 1 “m (24) has been replaced by A–lM~l L,
which is obtained from (1).

Scheme 1. the bi-orthonormalitv requirement cannot be
satisfied unless the { Ie, ) } themselves form an orthonormal
basis, and so do the {Iii)} for i = 1,2,..., n. Furthermore,
the canonical norms of { Iei ) } or { Ii;)} are rarely equal to one.
Thus, the constraint between the voltage and current vectors
IV) and II) is rarely satisfied. Therefore, this scheme is rarely
valid. It may be observed that (19) and (20) are the general
solutions to (5) and (1), respectively. After multiplying t<, the
i-th component of IV), by a nonzero scalar for each i, 11’) will
still be the general solution to the same equation. However,
thereafter, II) will not remain the solution to (1), because IV“)
and II) are constrained through (1) or (2). If either IV) or If) is
fixed, the other must be computed through the corresponding
coupling equation.

Scheme 2 guarantees the bi-orthonormality between the
basis vectors {\e, ) } and {Ii,)}, but violates the constraint of
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the general solution to the telegrapher’s equations, in general.
ExampIes of erroneous results from improper usage of these
two approaches will be provided in the next section.

It may be observed from the impedance expression in
Scheme 3 that the arbitrary factors in the norms of the basis
vectors {Iei ) } have been canceled due to the involvement

of both Mv and M~l in the expression of Zc while the
orthogonality between {Ie~) } and {Iii)} is still preserved.
With this approach, (15) becomes QtAQ = D where D is
a diagonal matrix, rather than an identity matrix I. Unlike
Schemes 1 and 2, this method does provide correct answers.
The only drawback of this method is the deteriorating accuracy
of Zc due to the computation of the inverse of Mv and the
cancellation of the arbitrary constants involved in the norms
when matrix Mv is nearly ill-conditioned. With this scheme,
(24) and (25) are not valid.

IV. EXAMPLES, REMARKS,AND CAUTIONS

In the preceding sections we have discussed the properties
of the dual bases in an n-dimensional Euclidean space, and
have emphasized the nonorthogonal property of the {Iei) } or
{Iii)} and the bi-orthonomnal property between the{ Iei)} and
{Iii)}. To provide physical and geometric insight into these
properties and to illustrate the features and limitations of linear
transformations, we present here a number of examples.

Example 1: Recently, Amari [19] demonstrated an inter-
nally inconsistent result where any two symmetric coupled

transmission lines could have a diagonal characteristic
impedance matrix, and, regardless of their physical and
geometric properties, could have the same characteristic
impedance matrix, when both {\ei )} and {Iii)} are normalized
(Scheme 1). A similar question was posed by Sun [20] and
replied to by Marx [21].

In Amari’s article, the normalized Mv and MI matrices
were as follows

“=($ -%)

and

l% –~}

The characteristicimpedance matrix,Zc, is obtained as

()z.=;;.

We see that ZC is an identity matrix because both Mv and

MI are unitary, i.e., M; = M~l and M; = M~l. Using
(24), we always obtain Z. = I.

Taking the symmetric two conductor case as illustrated in
[19], and computing ill. with our new algorithm, we obtain
the following results

Mu =
(

–6.32 7.01

6.32 7.01 )

and, using (24)

(z = 88.99 9.17
c

)
9.17 88.99 “

Vertical Axis
Symmetric Configuration (Clx+ O)’

mm

Vertkal Axis Asymmetric Configuration
with Ncm.lfnifcmn Oklectrics (dx + o).

Vertical Axis symmetric CcmfiguraiorI
with Nomu”iform Dielectrics (dx = 0]’”

I@..&

fig”,,, .,, Not to s..,. , D,men,,.m.,. correct

Fig. 1. Two line composite microstrip structures from which the con-espmd-
ing L and K matrices are generated.

It is clear in this example that the two column vectors of IMv
are perpendicular to each other; that is, M. is an orthogcmal
matrix. However, each column vector of Mu is scaled by
(eilL-’lei) = &, rather than by (eilei) = 1 for i = 1.,2,
where Ai is the i-th eigenvalue of matrix LK. This example
resolves the heretofore unresolved question raised in Amari’s
paper.

Example 2: To provide insight into the eigenvector scaling

and matrix simultaneous diagonalization, we shall extract
the mathematical features of the LK and KL matrices of
the composite microstrip structures from their corresponding
vector-space structures. Fig. 1(a)–l (d) depict a variety of
transmission line cross sectional structures of differing phys-
ical configurations, and with different material properties. To

simplify the problem, the X axis is chosen to be positioned
along the juncture between the ground plane and the first

dielectric layer. We then see that in the Case 1 structure, the
two conductors are symmetric about the Y axis and have
the same spacing above the ground plane. In Case 2, the
substructures (i.e., the elements of the dielectric sandwich) are
identical, but a location for the Y axis cannot be found which
makes the structure Y axis symmetric, and the conductors
have different spacings above the X axis, Case 3 has the same
geometric configuration as that of Case 2, but there is now a

lack of homogeneity in the dielectrics as well. Case 4 exhibits
Y axis symmetry again, but the two conductors have different
heights above the ground plane.

The geometry and dielectric properties of a symmetric

embedded microstrip transmission line structure of Fig. 4
in [7], and three asymmetric transmission line structures are
depicted in Fig. l(a)-(d), respectively. Their corresponding
inductance and capacitance matrices, L and K, are for case 1

(~ = 494.6 63.3

)63.3 494.6 ‘Him
(31)

K=
(

62.8 –4.9
–4.9 62.8 )

pF/m. (32)
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Fig. 2. Geometric representation of the eigen-bases of LK and KL matrices generated from two-line composite microstrip structures.
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Fig. 3. Composite microstrip structure employed in a numerical demonstration that the eigenvalues of the correspondhg L and K matrices are different
from the diagonal elements of the product of the dlagonalized L matrix and the diagonalized K matrix,

For Case 2

(33)(~ = 383.04 45.31
45.31 232.18 )

nH/m

K=
(

2420.17 –551.74
–551.32 4758.30 )

pF/m (34)

for Case 3

(35)( )~ ~ 383.04 45.31 ~wm
45.31 232,18

K=
(

143.01 –22.84
–22.61 4239.69 )

pF/m (36)

and for Case 4

( )~ ~ 368.10 123.42 nH,m
123.38 229.87 (37)

K=
(

146.18 –104.03
–103.84 4311.32 )

pF/m. (38)

The column vectors of Mv or MI, { Iei) } or {Iii)}, which
are the eigenvectors of the LK or KL matrices, span a two-
dimensional Euclidean space. The geometric structures of the

{ Ie;)} and {Iii)} bases in the Euclidean spaces for the four
cases are plotted in Fig. 2(a)–(d), respectively, where the
spatial angles between every two vectors of the two sets of
basis components axe computed by the standard directional
cosine formula.

In Fig. 2(a), due to the symmetry of the transmission lines,
{le~)} itself forms an orthogonal set, as does {Iii)}, i.e., all
angles between every pair of these basis vectors equal 90°.

This result verifies the bi-orthonormality between the bases

{Iei)} and {Iii)} in the original Euclidean space and its dual

space, and demonstrates that these two orthogonal coordinate

systems are equivalent. In Fig. 2(b), LK and KL are not
symmetric, and the angle between the basis components Iil )

and 122) is 83°, while the angle between Iel ) and le2) is 97°.

Note that the vector Iei ) is no longer parallel to the vector
Iii) for i = 1,2 (the angle between them is not 0°, but 70).

This nonzero angle induces the source of the errors in the

conventional normalization schemes, as will be discussed in

detail in the final example,

Fig. 2(c) depicts the angle between Iil ) and Iiz) to be 79°,

and the angle between Iel ) and Iez ) to be 1010. The angle

between the basis components Iii) and Ie;) for i = 1,2 is 11°.
In Fig. 2(d), we see a remarkable increase of the off-orthogonal
angles between the “self’ bases. The angle between Iil ) and

122) is 62°, and the angle between [el) and Iez) is 118°. The
angle between the “mutual” bases Iiz) and Ie;) for i = 1, 2 is
28°. Nevertheless, the angles between the basis vectors { Iei)}

and {Iij)}, for z # j, are always equal to 90°.
For the Case 1 structure, the eigenvectors of the LK

matrix will not only be linearly independent, but will also

be orthogonal to each other. In the asymmetric cases, where

the heights above the ground plane for the two conductors

are different, decreasing the horizontal separation of the two

conductors results in an increasing departure from orthogo-

nality of the spanning set of eigenvectors, even though the

basis vectors generated from these matrices will continue to be
linearly independent. This situation may be understood fairly



LEI et al.: EXAMINATION OF MODAL DECOUPLING METHOD FOR TRANSMISSION LINES 2’097

straightforwardly for the case of a two conductor transmission
line. When structures containing three or more conductors
are examined, it is virtually impossible that the resulting KL
or LK matrices can generate a spanning set of eigenvectors
which are orthogonal, though, as before, they continue to

be linearly independent. Thus, in general, the concept of
orthogonal basis sets does not apply, and none can be found

for those complex structures.
Example 3: Here we shall show a case in which the simul-

taneous diagonalization scheme of the matrices L, K, LK,
and KL works for a two symmetric line configuration, but
does not work in general.

In Case 1, the diagonal elements of matrix K are identical,

as are those of matrix L. With this property, the 2 x 2 matrices
L and K as well as the matrices L-l and K commute, which

guarantees also that the product of either LK or KL is a
real symmetric matrix, As a result, the eigenvectors of L are

also eigenvectors of K. The necessary and sufficient condition
that two real symmetric matrices commute is that they have
a common complete set of orthonormal eigenvectors [14, 22].
For this special case, the eigenbasis of K–l coincides with that
of L, as well as with that of LK, and the transformation matrix
MV becomes an orthogonal matrix. Furthermore, the matrices

L and L-l or K and K-l have a common complete set of

orthonormal eigenvectors, because a matrix and its inverse

always commute with each other. Thus, the two bases, {Ie,) }
and {Iii) }, become equivalent, i.e., the orthogonal bases are

self dual. Now it is readily apparent that the six matrices L,
L–l, K, K-l, LK, and KL can be diagonalized in their

common eigenbasis, { Iet ) } or { Iil )}. Applying the congruence
transformation to the L and K matrices, we obtain

Ld = MjLM1 =
(

431.30 0.00
0.00 557.90 )

nH/m

Kd = M~KMv =
(

67.70 0.00

0.00 57.90 )
pF/m

where M; = M; 1, and the diagonal elements of L~ and Kd

are the eigenvalues of L and K, respectively.
This validates (7a) and (7b) in [8] which describe the

simultaneous diagonalization of the matrices L and K by the
matrix Mv, namely

& = Nf;KMv

where MI = (M;) – 1. However, if the 2 x 2 matrices L and
K do not have identical diagonal elements, and thus do not
commute, then the bases {Iei ) } and {Ii,)}, or equivalently M ~
and M,, are different from each other. If matrices L and K do
not commute, the diagonalization of L and K by (7a) and (7b)

in [8] may lead to erroneous results, as will be demonstrated
in the following section.

Applying the congruence transformation to the L and K
matrices, for the first asymmetric case, we obtain

Ld = M;LMI =
(

380.71 0.17

0.18 224.47 )
nH/m

& = M;KMv = (2331.90 2.19

1.77 4730.60 )
pF/m.

The eigenvalues of L and K are calculated as 395,599 and
219.624 (nH/m) for L and 2296.60 and 4881.87 (pF/m) for K,

respectively. It may be observed that the diagonal elements of

Ld and Kd are different from the eigenvalues of L and K,

and the L and K matrices are not truly diagonalized by the

congruence transformation,
For the second asymmetric case, we obtain

Ld = M;LMI =
(

360.19 0.02

)0.02 232.30 ‘H’m

Kd = M;KM1. =
(

143.07 0.24
0.01 4077.80 )

pF/m.

The eigenvalues of L and K are calculated as 395.60 and
219.62 (nH/m) for L, and 142.88 and 4239.82 (pF/m) for K,
respectively. It may be observed that the difference between
the diagonal elements of the matrices Ld and lK~ and the
eigenvalues of the matrices L and K becomes slightly larger
than that in the first asymmetric case.

For the third or last asymmetric case, we obtain

Ld = M;LMI =
(

235.96 0.03

)0.01 228.32 ‘Wm

Kd = M;-KMl, =
(

145.04 0.15

0.02 3315.70 )
pF/m.

The eigenvalues of L and K are calculated as 440.42 and
157.55 (nH/m) for L and 143.58 and 4313.91 (pF/m) for
K, respectively, From this case, a large difference between
the diagonal elements of the matrices Ld and Kd and the
eigenvalues of the matrices L and K is observed. Clearly, all
the above Ld and Kd matrices are not truly diagonal, though
the off-diagonal elements are much smaller than the diagonal
elements. This situation occurs because the normalized con-

gruence transformation matrix MI (Mv) is not designed to

diagonalize L (K), unless L and K commute.
The discrepancy between the diagonal elements of Ld and

the eigenvalues of L, and between the diagonal elements of”&

and the eigenvalues of K, increases with the off-orthogonal
angles between the eigenbases {Ie,)} or {Ii,)}. From the
geometric structure of the bases, it may be observed that for
asymmetric lines, the simultaneous diagonalization of matrices
L and K fails. Note that through the use of the new algorithm
introduced in Section II, the matrices L – 1 and K as well as
LK, and the matrices K-1 and L as well as KL, can be
simultaneously diagonalized by the Mu and M, transforma-

tions,respectively,with the correspondingcanonicalnorms.

However, the diagonal elements of L~ and Kd are not the
eigenvalues of L and K (though the diagonal elements of
Kd are the eigenvalues of LK). It is clear that the diagonal
elements of LdK~ will not be the eigenvalues of LK, and thus
cannot provide the correct values of the modal velocities, If
L is diagonalized by means of the congruence transformation
MI, and K is diagonalized with the congruence transformation
of Mv, these two matrices L and K are transformed into 1.wo
different coordinate systems. The simultaneous diagonalization
scheme is valid only when MV and MI are orthogonal.
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Example 4: To emphasize the conclusion discussed in Ex-

ample 3, we introduce yet another example for the asymmetric
three-line in a multilayer media, as depicted in Fig. 3. The
capacitance and the inductance matrices of the composite
microstrip structure of Fig. 3 are computed as

(

0.6266 –0.2295 –0.0130
K = –0.2295

)

0.4380 –0.0068 pF/cm

–0.0130 –0.0068 2.1480

and

(

14.4600 8.0360 0.1307
L=

)

8.0360 14,4700 0.1302 nH/cm.
0.1307 0.1302 6.1020

The eigenvalues of LK are computed as 7.3356e- 17, 4.3721e-
17, and 1.3 104e- 16 (see/m)2. After performing the similarity
transformations on L and K, the diagonalized matrices L and
K, namely, L~ and Kd turn out to be

Ld

(

2.2503e + 01 0.0000e + 00 0.0000e + 00

)

= 0.0000e + 00 6.4289e + 00 0.0000e + 00 nH/cm

0.0000e + 00 0.0000e + 00 6.0999e + 00

and

Kd

(

2.8409e – 01 0,0000e + 00 0.0000e + 00

)

= 0.0000e + 00 7.8038e – 01 0.0000e + 00 pF/cm.
0.0000e + 00 0.0000e + 00 2.1481e + 00

The diagonal matrix of the matrix product L~Kd is the
following

LdKd
2)

(

6.3929e – 17 0.0000e + 00 0.0000e + 00

)

= 0.0000e + 00 5.0171e – 17 0.0000e + 00 (see/m2).
0.0000e +00 0.0000e + 00 1.3103e – 16

It is clear that the three diagonal elements are not the same as
the eigenvalues of LK, These differences occur because the L
and K matrices were diagonalized in two different coordinate
systems. Even though L and K are truly diagonalized, the
product of the corresponding eigenvalues cannot lead to the
correct eigenmode velocities.

Examp/e 5: Numerical results showing the characteristic

impedance matrix, ZC, constructed by the improperly normal-
ized { let)} and {Iii)} discussed in Section III, are presented
as the final example. As stated earlier, at least three schemes
have been used to specify the norms of {Iei) } and { ]i,) }.
However, two of the three yield incorrect results, as will be
demonstrated in the following examples:

1) In Section III, we described the normalization for both
{Iei)} and {Ii,)} as Scheme 1 and discussed a two
line symmetric case in Example 2. We shall analyze
the third asymmetric line case in Example 2 using this
scheme. With the matrices L and K given by (37) and
(38), the corresponding normalized voltage and current
eigenvector matrices are

MT, = (–1.000 0.467
–0.006 0.884 )

and

MI =
(

–0.884 –0.006
0.467 )1.000 “

Thus,

(0.881 –0.001
MIM:- = 0000 0.881)

the bi-orthonormal relationship is not satisfied, i.e.,

MrM~ # I, because the angles between the basis
components Iii ) and Ie~) for i = 1,2 are not equal to
0°. An inspection of the above matrices reveals that
(ei Iii) < 1 in the nonorthogonal M~,- and MI cases,
and the offset between M; MI and I would become
larger when the nonorthogonality of the bases { \e, ) }
and {Ii, )} increases.
The characteristic impedance matrix, ZC, constructed by

(24) turns out to be

(

z = 1.383 0.476
c

)
0.476 0.887 “

The characteristic impedance matrix obtained using our
scheme to construct M. is

(

z = 47.829 4.178
c

)
4.178 7.362 “

Comparing these two representations of ZC, the signifi-
cant discrepancy between them is apparent.
In the second scheme of setting the norms of { Iei) }
and { Ii,)} described in Section III, (5) was solved

and the {Ie,)} were normalized, and then the {Iii)}
were computed by means of the bi-orthonormal relation
(25). The Mv matrix is the same as that in 1). The
corresponding MI matrix for the third asymmetric case
is

MI =
(

–1.003 –0.008
0.531 )1.135 “

It may be observed that to satisfy the bi-orthonormality
between Ml, and MI, the norms of each current
eigenvector must be greater than unity, and the norms
must become even greater with further increases in the
nonorthogonality of the { Iei) } and {Iii)} bases.
The characteristic impedance matrix constructed by
(24) is

(

z = 1.218 0.419
c

)
0.419 0.782

Similarly, the difference in the ZC generated by this ap-
proach and by our approach is large. Note that using this
approach, the relationship between M; and MI is fixed

by (25). However, the necessary constraint established
by (1), or equivalently, by M~l = A-l M~lL, cannot
be satisfied in the general case. Thus, the characteristic
impedance matrix constructed by (24) is still incorrect.
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V. CONCLUSION

In this paper, we have developed a novel method to decouple

the two-sided matrix differential equations and to specify

the canonical norms of the voltage and current eigenvectors

for the construction of the characteristic impedance matrix.

The core technique of this method was then used to prove

the diagonalizability of the nonnormal matrix LK (or KL);
thus, the conventional approach which decouples the one-sided
matrix differential equations has now been justified. We also
revealed the feature of the nonHermitian matrices LK and
KL that their eigenbases are nonorthogonal. Therefore, the
projection theorem and other related frame work developed
in the orthonormal basis cannot be directly applied. Based

on this work, we have rigorously analyzed the modal de-

coupling method and have illustrated the limitations in the

application of the diagonalization of two or more matrices.

A historical problem involved in the normalization of the
voltage and current eigenvectors of matrices LK and KL
has been resolved. In addition, we clarified the theory of
partial differential equations and provided a procedure of
obtaining solutions to the coupled multi-variable differential
equations. Finally, we wish to emphasize that under accidental-
degeneracy conditions, a complex nonnormal matrix ZY,
whose counter pair is LK, is nondiagonalizable. The solution
of this latter problem will be the subject of a future submission,
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